Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708339

RESUMEN

Monitoring the diversity and distribution of species in an ecosystem is essential to assess the success of restoration strategies. Implementing biomonitoring methods, which provide a comprehensive assessment of species diversity and mitigate biases in data collection, holds significant importance in biodiversity research. Additionally, ensuring that these methods are cost-efficient and require minimal effort is crucial for effective environmental monitoring. In this study we compare the efficiency of species detection, the cost and the effort of two non-destructive sampling techniques: Baited Remote Underwater Video (BRUV) and environmental DNA (eDNA) metabarcoding to survey marine vertebrate species. Comparisons were conducted along the Sussex coast upon the introduction of the Nearshore Trawling Byelaw. This Byelaw aims to boost the recovery of the dense kelp beds and the associated biodiversity that existed in the 1980s. We show that overall BRUV surveys are more affordable than eDNA, however, eDNA detects almost three times as many species as BRUV. eDNA and BRUV surveys are comparable in terms of effort required for each method, unless eDNA analysis is carried out externally, in which case eDNA requires less effort for the lead researchers. Furthermore, we show that increased eDNA replication yields more informative results on community structure. We found that using both methods in conjunction provides a more complete view of biodiversity, with BRUV data supplementing eDNA monitoring by recording species missed by eDNA and by providing additional environmental and life history metrics. The results from this study will serve as a baseline of the marine vertebrate community in Sussex Bay allowing future biodiversity monitoring research projects to understand community structure as the ecosystem recovers following the removal of trawling fishing pressure. Although this study was regional, the findings presented herein have relevance to marine biodiversity and conservation monitoring programs around the globe.


Asunto(s)
Biodiversidad , ADN Ambiental , Monitoreo del Ambiente , ADN Ambiental/análisis , ADN Ambiental/genética , Animales , Monitoreo del Ambiente/métodos , Organismos Acuáticos/genética , Grabación en Video/métodos , Ecosistema , Código de Barras del ADN Taxonómico/métodos
2.
Proc Biol Sci ; 291(2015): 20231614, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38264782

RESUMEN

Our ability to assess biodiversity at relevant spatial and temporal scales for informing management is of increasing importance given this is foundational to identify and mitigate the impacts of global change. Collecting baseline information and tracking ecological changes are particularly important for areas experiencing rapid changes and representing data gaps such as Arctic marine ecosystems. Environmental DNA has the potential to provide such data. We extracted environmental DNA from 90 surface sediment samples to assess eukaryote diversity around Greenland and Svalbard using two separate primer pairs amplifying different sections of the 18S rRNA gene. We detected 27 different phyla and 99 different orders and found that temperature and the change in temperature explained the most variation in the community in a single linear model, while latitude, sea ice cover and change in temperature explained the most variation in the community when assessed by individual non-linear models. We identified potential indicator taxa for Arctic climate change, including a terebellid annelid worm. In conclusion, our study demonstrates that environmental DNA offers a feasible method to assess biodiversity and identifies warming as a key driver of differences in biodiversity across these remote ecosystems.


Asunto(s)
ADN Ambiental , Ecosistema , Biodiversidad , Clima , Sedimentos Geológicos
3.
Sci Total Environ ; 898: 165507, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37442464

RESUMEN

Macroalgal forests export much of their production, partly supporting food webs and carbon stocks beyond their habitat, but evidence of their contribution in sediment carbon stocks is poor. We test the hypothesis that macroalgae contribute to carbon stocks in arctic marine sediments. We used environmental DNA (eDNA) fingerprinting on a large-scale set of surface sediment samples from Greenland and Svalbard. We evaluated eDNA results by comparing with traditional survey and tracer methods. The eDNA-based survey identified macroalgae in 94 % of the sediment samples covering shallow nearshore areas to 1460 m depth and 350 km offshore, with highest sequence abundance nearshore and with dominance of brown macroalgae. Overall, the eDNA results reflected the potential source communities of macroalgae and eelgrass assessed by traditional surveys, with the most abundant orders being common among different methods. A stable isotope analysis showed a considerable contribution from macroalgae in sediments although with high uncertainty, highlighting eDNA as a great improvement and supplement for documenting macroalgae as a contributor to sediment carbon stocks. Conclusively, we provide evidence for a prevalent contribution of macroalgal forests in arctic surface sediments, nearshore as well as offshore, identifying brown algae as main contributors.


Asunto(s)
ADN Ambiental , Algas Marinas , Sedimentos Geológicos , Ecosistema , Carbono/análisis , Cadena Alimentaria
4.
Nat Biotechnol ; 41(9): 1208-1220, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365259

RESUMEN

Human societies depend on marine ecosystems, but their degradation continues. Toward mitigating this decline, new and more effective ways to precisely measure the status and condition of marine environments are needed alongside existing rebuilding strategies. Here, we provide an overview of how sensors and wearable technology developed for humans could be adapted to improve marine monitoring. We describe barriers that have slowed the transition of this technology from land to sea, update on the developments in sensors to advance ocean observation and advocate for more widespread use of wearables on marine organisms in the wild and in aquaculture. We propose that large-scale use of wearables could facilitate the concept of an 'internet of marine life' that might contribute to a more robust and effective observation system for the oceans and commercial aquaculture operations. These observations may aid in rationalizing strategies toward conservation and restoration of marine communities and habitats.


Asunto(s)
Ecosistema , Dispositivos Electrónicos Vestibles , Humanos , Organismos Acuáticos , Océanos y Mares , Tecnología
5.
Glob Chang Biol ; 28(5): 1753-1765, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34343392

RESUMEN

Over this century, coral reefs will run the gauntlet of climate change, as marine heatwaves (MHWs) become more intense and frequent, and ocean acidification (OA) progresses. However, we still lack a quantitative assessment of how, and to what degree, OA will moderate the responses of corals to MHWs as they intensify throughout this century. Here, we first projected future MHW intensities for tropical regions under three future greenhouse gas emissions scenario (representative concentration pathways, RCP2.6, RCP4.5 and RCP8.5) for the near-term (2021-2040), mid-century (2041-2060) and late-century (2081-2100). We then combined these MHW intensity projections with a global data set of 1,788 experiments to assess coral attribute performance and survival under the three emissions scenarios for the near-term, mid-century and late-century in the presence and absence of OA. Although warming and OA had predominately additive impacts on the coral responses, the contribution of OA in affecting most coral attributes was minor relative to the dominant role of intensifying MHWs. However, the addition of OA led to greater decreases in photosynthesis and survival under intermediate and unrestricted emissions scenario for the mid- and late-century than if intensifying MHWs were considered as the only driver. These results show that role of OA in modulating coral responses to intensifying MHWs depended on the focal coral attribute and extremity of the scenario examined. Specifically, intensifying MHWs and OA will cause increasing instances of coral bleaching and substantial declines in coral productivity, calcification and survival within the next two decades under the low and intermediate emissions scenario. These projections suggest that corals must rapidly adapt or acclimatize to projected ocean conditions to persist, which is far more likely under a low emissions scenario and with increasing efforts to manage reefs to enhance resilience.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Cambio Climático , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
6.
Glob Chang Biol ; 27(21): 5532-5546, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34391212

RESUMEN

Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2 , and O2 ) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2 , and dissolved O2 , which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change.


Asunto(s)
Antozoos , Animales , Cambio Climático , Arrecifes de Coral , Océanos y Mares , Temperatura
7.
Biol Conserv ; 263: 109175, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34035536

RESUMEN

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.

8.
Glob Chang Biol ; 27(11): 2592-2607, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33843114

RESUMEN

The introduction and establishment of exotic species often result in significant changes in recipient communities and their associated ecosystem services. However, usually the magnitude and direction of the changes are difficult to quantify because there is no pre-introduction data. Specifically, little is known about the effect of marine exotic macrophytes on organic carbon sequestration and storage. Here, we combine dating sediment cores (210 Pb) with sediment eDNA fingerprinting to reconstruct the chronology of pre- and post-arrival of the Red Sea seagrass Halophila stipulacea spreading into the Eastern Mediterranean native seagrass meadows. We then compare sediment organic carbon storage and burial rates before and after the arrival of H. stipulacea and between exotic (H. stipulacea) and native (C. nodosa and P. oceanica) meadows since the time of arrival following a Before-After-Control-Impact (BACI) approach. This analysis revealed that H. stipulacea arrived at the areas of study in Limassol (Cyprus) and West Crete (Greece) in the 1930s and 1970s, respectively. Average sediment organic carbon after the arrival of H. stipulacea to the sites increased in the exotic meadows twofold, from 8.4 ± 2.5 g Corg  m-2  year-1 to 14.7 ± 3.6 g Corg  m-2  year-1 , and, since then, burial rates in the exotic seagrass meadows were higher than in native ones of Cymodocea nodosa and Posidonia oceanica. Carbon isotopic data indicated a 50% increase of the seagrass contribution to the total sediment Corg pool since the arrival of H. stipulacea. Our results demonstrate that the invasion of H. stipulacea may play an important role in maintaining the blue carbon sink capacity in the future warmer Mediterranean Sea, by developing new carbon sinks in bare sediments and colonizing areas previously occupied by the colder thermal affinity P. oceanica.


Asunto(s)
Alismatales , Hydrocharitaceae , Carbono/análisis , Secuestro de Carbono , Ecosistema , Sedimentos Geológicos , Océano Índico , Mar Mediterráneo
9.
Proc Biol Sci ; 287(1928): 20192978, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32486977

RESUMEN

Prey naiveté-the failure of prey to recognize novel predators as threats-is thought to exacerbate the impact that exotic predators exert on prey populations. Prey naiveté varies under the influence of eco-evolutionary mediating factors, such as biogeographic isolation and prey adaptation, although an overall quantification of their influence is lacking. We conducted a global meta-analysis to test the effects of several hypothesized mediating factors on the expression of prey naiveté. Prey were overall naive towards exotic predators in marine and freshwater systems but not in terrestrial systems. Prey naiveté was most pronounced towards exotic predators that did not have native congeneric relatives in the recipient community. Time since introduction was relevant, as prey naiveté declined with the number of generations since introduction; on average, around 200 generations may be required to erode naiveté sufficiently for prey to display antipredator behaviour towards exotic predators. Given that exotic predators are a major cause of extinction, the global predictors and trends of prey naiveté presented here can inform efforts to meet conservation targets.


Asunto(s)
Conducta Predatoria , Animales , Cadena Alimentaria , Agua Dulce , Especies Introducidas
10.
Mol Ecol Resour ; 20(4): 920-935, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32279439

RESUMEN

Studies focusing on marine macrophyte metabarcoding from environmental samples are scarce, due to the lack of a universal barcode for these taxa, and to their poor representation in DNA databases. Here, we searched for a short barcode able to identify marine macrophytes from tissue samples; then, we created a DNA reference library which was used to identify macrophytes in eDNA from coastal sediments. Barcoding of seagrasses, mangroves and marine macroalgae (Chlorophyta, Rhodophyta and Phaeophyceae) was tested using 18 primer pairs from six barcoding genes: the plant barcodes rbcL, matK and trnL, plus the genes ITS2, COI and 18S. The 18S gene showed the highest universality among marine macrophytes, amplifying 95%-100% of samples; amplification performance of the other barcodes was limited. Taxonomy was assigned using a phylogeny-based approach to create an 18S DNA reference library. Macrophyte tissue sequences were accurately identified within their phyla (88%), order (76%), genus (71%) and species (23%). Nevertheless, out of 86 macrophytes tested, only 48% and 15% had a reference sequence at genus and at species level, respectively. Identification at these levels can be improved by more inclusive reference libraries. Using the 18S mini-barcode and the reference library, we recovered eDNA from 21 marine macrophytes in sediments, demonstrating the barcode's ability to trace primary producers that contribute to blue carbon. We expect this barcode to also be useful for other ecological questions, such as tracing macro primary producers in marine food webs.


Asunto(s)
ADN de Plantas/genética , Algas Marinas/genética , Chlorophyta/genética , Código de Barras del ADN Taxonómico/métodos , Cartilla de ADN/genética , Biblioteca de Genes , Sedimentos Geológicos/química , Phaeophyceae/genética , Filogenia , Rhodophyta/genética
11.
Glob Chall ; 4(4): 2000001, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32257383

RESUMEN

While the outstanding properties of graphene have attracted a lot of attention, one of the major bottlenecks of its widespread usage is its availability in large volumes. Laser printing graphene on polyimide films is an efficient single-step fabrication process that can remedy this issue. A laser-printed, flexible pressure sensor is developed utilizing the piezoresistive effect of 3D porous graphene. The pressure sensors performance can be easily adjusted via the geometrical parameters. They have a sensitivity in the range of 1.23 × 10-3 kPa and feature a high resolution with a detection limit of 10 Pa in combination with an extremely wide dynamic range of at least 20 MPa. They also provide excellent long-term stability of at least 15 000 cycles. The biocompatibility of laser-induced graphene is also evaluated by cytotoxicity assays and fluorescent staining, which show an insignificant drop in viability. Polymethyl methacrylate coating is particularly useful for underwater applications, protecting the sensors from biofouling and shunt currents, and enable operation at a depth of 2 km in highly saline Red Sea water. Due to its features, the sensors are a prime choice for multiple healthcare applications; for example, they are used for heart rate monitoring, plantar pressure measurements, and tactile sensing.

12.
R Soc Open Sci ; 7(1): 191118, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32218942

RESUMEN

Understanding the consequences of rising CO2 and warming on marine ecosystems is a pressing issue in ecology. Manipulative experiments that assess responses of biota to future ocean warming and acidification conditions form a necessary basis for expectations on how marine taxa may respond. Although designing experiments in the context of local variability is most appropriate, local temperature and CO2 characteristics are often unknown as such measures necessitate significant resources, and even less is known about local future scenarios. To help address these issues, we summarize current uncertainties in CO2 emission trajectories and climate sensitivity, examine region-specific changes in the ocean, and present a straightforward global framework to guide experimental designs. We advocate for the inclusion of multiple plausible future scenarios of predicted levels of ocean warming and acidification in forthcoming experimental research. Growing a robust experimental base is crucial to understanding the prospect form and function of marine ecosystems in the Anthropocene.

14.
J Anim Ecol ; 89(1): 161-172, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31173339

RESUMEN

It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.


Asunto(s)
Aceleración , Metabolismo Energético , Animales , Movimiento
15.
Glob Chang Biol ; 26(3): 1248-1258, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758645

RESUMEN

Predictors for the ecological effects of non-native species are lacking, even though such knowledge is fundamental to manage non-native species and mitigate their impacts. Current theories suggest that the ecological effects of non-native species may be related to other concomitant anthropogenic stressors, but this has not been tested at a global scale. We combine an exhaustive meta-analysis of the ecological effects of marine non-native species with human footprint proxies to determine whether the ecological changes due to non-native species are modulated by co-occurring anthropogenic impacts. We found that non-native species had greater negative effects on native biodiversity where human population was high and caused reductions in individual performance where cumulative human impacts were large. On this basis we identified several marine ecoregions where non-native species may have the greatest ecological effects, including areas in the Mediterranean Sea and along the northwest coast of the United States. In conclusion, our global assessment suggests coexisting anthropogenic impacts can intensify the ecological effects of non-native species.


Asunto(s)
Ecosistema , Especies Introducidas , Biodiversidad , Ecología , Humanos , Mar Mediterráneo
16.
Nat Ecol Evol ; 3(9): 1367, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31375777

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Ecol Evol ; 3(5): 787-800, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962561

RESUMEN

Exotic species are a growing global ecological threat; however, their overall effects are insufficiently understood. While some exotic species are implicated in many species extinctions, others can provide benefits to the recipient communities. Here, we performed a meta-analysis to quantify and synthesize the ecological effects of 76 exotic marine species (about 6% of the listed exotics) on ten variables in marine communities. These species caused an overall significant, but modest in magnitude (as indicated by a mean effect size of g < 0.2), decrease in ecological variables. Marine primary producers and predators were the most disruptive trophic groups of the exotic species. Approximately 10% (that is, 2 out of 19) of the exotic species assessed in at least three independent studies had significant impacts on native species. Separating the innocuous from the disruptive exotic species provides a basis for triage efforts to control the marine exotic species that have the most impact, thereby helping to meet Aichi Biodiversity Target 9 of the Convention on Biological Diversity.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecología , Extinción Biológica
18.
PLoS One ; 14(4): e0215691, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30998797

RESUMEN

Non-native species are a major driver of environmental change. In this study we assessed the ecological impact of the "worst" non-native species and the associated scientific and media publications through time to understand what influences interest in these species. Ecological effect was based on a qualitative assessment reported in research publications and additional searches of the scientific and media attention were conducted to determine published articles and assess attention. We did not detect a relationship between the number of publications for a non-native species and the magnitude of the ecological effects of that species or the number of citations. Media coverage on non-native species was low, only evident for less than 50% of the non-native species assessed. Media coverage was initially related to the number of scientific publications, but was short-lived. In contrast, the attention to individual non-native species in the scientific literature was sustained through time and often continued to increase over time. Time between detection of the non-native species and the scientific/media attention were reduced with each successive introduction to a new geographic location. Tracking publications on non-native species indicated that media attention does seem to be associated with the production of scientific research while scientific attention was not related to the magnitude of the ecological effects.


Asunto(s)
Organismos Acuáticos , Ecosistema , Especies Introducidas , Publicaciones
19.
Small ; 15(10): e1804385, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30706612

RESUMEN

Advances in marine research to understand environmental change and its effect on marine ecosystems rely on gathering data on species physiology, their habitat, and their mobility patterns using heavy and invasive biologgers and sensory telemetric networks. In the past, a lightweight (6 g) compliant environmental monitoring system: Marine Skin was demonstrated. In this paper, an enhanced version of that skin with improved functionalities (500-1500% enhanced sensitivity), packaging, and most importantly its endurance at a depth of 2 km in the highly saline Red Sea water for four consecutive weeks is reported. A unique noninvasive approach for attachment of the sensor by designing a wearable, stretchable jacket (bracelet) that can adhere to any species irrespective of their skin type is also illustrated. The wearable featherlight (<0.5 g in air, 3 g with jacket) gadget is deployed on Barramundi, Seabream, and common goldfish to demonstrate the noninvasive and effective attachment strategy on different species of variable sizes which does not hinder the animals' natural movement or behavior.


Asunto(s)
Técnicas Biosensibles/métodos , Monitoreo del Ambiente/métodos , Ecosistema , Dispositivos Electrónicos Vestibles
20.
PLoS One ; 8(2): e55100, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408957

RESUMEN

Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish--Opsanus tau), prey (mud crab--Panopeus herbstii) and resource (ribbed musse--Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured.


Asunto(s)
Conducta Predatoria , Animales , Ecología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...